1.0 Statistics

Mean

\[\mu = \frac{\sum x_i}{N} \quad (1.1a) \]
\[\bar{x} = \frac{\sum x_i}{n} \quad (1.1b) \]

\(\mu \) = population mean
\(\bar{x} \) = sample mean
\(\sum x_i \) = sum of all data values \((x_1, x_2, x_3, \ldots) \)
\(N \) = size of population
\(n \) = size of sample

Median

Place data in ascending order.
If \(N \) is odd, median = central value
If \(N \) is even, median = mean of two central values
\(N \) = size of population

Mode

Place data in ascending order.
Mode = most frequently occurring value
(1.4)
If two values occur with maximum frequency the data set is **bimodal**.
If three or more values occur with maximum frequency the data set is **multi-modal**.

Standard Deviation

\[\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}} \quad (Population) \quad (1.5a) \]
\[s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \quad (Sample) \quad (1.5b) \]

\(\sigma \) = population standard deviation
\(s \) = sample standard deviation
\(x_i \) = individual data value \((x_1, x_2, x_3, \ldots) \)
\(\mu \) = population mean
\(\bar{x} \) = sample mean
\(N \) = size of population
\(n \) = size of sample

Range

\[\text{Range} = x_{\text{max}} - x_{\text{min}} \quad (1.3) \]

\(x_{\text{max}} \) = maximum data value
\(x_{\text{min}} \) = minimum data value

2.0 Probability

Frequency

\[f_x = \frac{n_x}{n} \quad (2.1) \]

\(f_x \) = relative frequency of outcome \(x \)
\(n_x \) = number of events with outcome \(x \)
\(n \) = total number of events

Binomial Probability

(order doesn’t matter)

\[P_k = \frac{n!p^k(q^{n-k})}{k!(n-k)!} \quad (2.2) \]

\(P_k \) = binomial probability of \(k \) successes in \(n \) trials
\(p \) = probability of a success
\(q = 1 - p \) = probability of failure
\(k \) = number of successes
\(n \) = number of trials

Independent Events

\[P (A \text{ and } B \text{ and } C) = P_A P_B P_C \quad (2.3) \]

\(P (A \text{ and } B \text{ and } C) \) = probability of independent events \(A \) and \(B \) and \(C \) occurring in sequence
\(P_A \) = probability of event \(A \)

Mutually Exclusive Events

\[P (A \text{ or } B) = P_A + P_B \quad (2.4) \]

\(P (A \text{ or } B) \) = probability of either mutually exclusive event \(A \) or \(B \) occurring in a trial
\(P_A \) = probability of event \(A \)

Conditional Probability

\[P(A|D) = \frac{P(A)P(D|A)}{P(A)P(D|A) + P(\sim A)P(D|\sim A)} \quad (2.5) \]

\(P(A|D) \) = probability of event \(A \) given event \(D \)
\(P(A) \) = probability of event \(A \) occurring
\(P(\sim A) \) = probability of event \(A \) not occurring
\(P(D|\sim A) \) = probability of event \(D \) given event \(A \) did not occur
3.0 Plane Geometry

Circle
- Circumference = $2\pi r$ (3.1)
- Area = πr^2 (3.2)

Parallelogram
- Area = bh (3.3)

Triangle (3.6)
- Area = $\frac{1}{2} bh$ (3.11)
- $a^2 = b^2 + c^2 - 2bc \cos \angle A$ (3.12)
- $b^2 = a^2 + c^2 - 2ac \cos \angle B$ (3.13)
- $c^2 = a^2 + b^2 - 2ab \cos \angle C$ (3.14)

Regular Polygons
- Area = $n \frac{s^2 f}{2} = \frac{ns^2}{4 \tan \left(\frac{180}{n} \right)}$ (3.15)
 - n = number of sides

Trapezoid (3.16)
- Area = $\frac{1}{2}(a + b)h$

4.0 Solid Geometry

Cube
- Volume = s^3 (4.1)
- Surface Area = $6s^2$ (4.2)

Rectangular Prism
- Volume = wdh (4.3)
- Surface Area = $2(wd + wh + dh)$ (4.4)

Right Circular Cone
- Volume = $\frac{\pi r^2 h}{3}$ (4.5)
- Total Surface Area = $\pi r^2 + \pi r \sqrt{r^2 + h^2}$ (4.6)

Pyramid
- Volume = $\frac{Ah}{3}$ (4.7)
 - A = area of base

Ellipse
- Area = πab (3.8)

Rectangle
- Perimeter = $2a + 2b$ (3.9)
- Area = ab (3.10)

Ellipse
- Area = πab (3.8)

Regular Polygons
- Area = $n \frac{s^2 f}{2} = \frac{ns^2}{4 \tan \left(\frac{180}{n} \right)}$ (3.15)
 - n = number of sides

5.0 Constants

- $g = 9.8 \text{ m/s}^2 = 32.17 \text{ ft/s}^2$
- $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$
- $\pi = 3.14159$
6.0 Conversions

Mass/Weight (6.1)
- 1 kg = 2.205 lb
- 1 slug = 32.2 lb
- 1 ton = 2000 lb
- 1 lb = 16 oz

Length (6.2)
- 1 m = 3.28 ft
- 1 km = 0.621 mi
- 1 in. = 2.54 cm
- 1 mi = 5280 ft
- 1 yd = 3 ft

Time (6.3)
- 1 d = 24 h
- 1 h = 60 min
- 1 min = 60 s
- 1 yr = 365 d

Area (6.4)
- 1 acre = 4047 m²
- 1 m² = 16.13 sq ft

Volume (6.5)
- 1L = 0.264 gal
- 1 mL = 1 cm³ = 1 cc

Temperature Unit Equivalents (6.6)
- Δ K = Δ 1 °C
- Δ 1.8 °F
- Δ 1.8 °R

Power (6.9)
- 1 W = 3.412 Btu/h
- 1 hp = 0.7376 ft·lb/sec
- 1 kW·h = 3,600,000 J

Pressure (6.8)
- 1 atm = 1.01325 bar
- 1 psi = 2.31 ft of H₂O

Rotational Speed (6.11)
- 1 Hz = 2π rad/sec = 60 rpm

7.0 Defined Units

Numbers Less Than One

<table>
<thead>
<tr>
<th>Power of 10</th>
<th>Decimal Equivalent</th>
<th>Prefix</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻¹</td>
<td>0.1</td>
<td>deci-</td>
<td>d</td>
</tr>
<tr>
<td>10⁻²</td>
<td>0.01</td>
<td>centi-</td>
<td>c</td>
</tr>
<tr>
<td>10⁻³</td>
<td>0.001</td>
<td>milli-</td>
<td>m</td>
</tr>
<tr>
<td>10⁻⁶</td>
<td>0.000001</td>
<td>micro-</td>
<td>µ</td>
</tr>
<tr>
<td>10⁻⁹</td>
<td>0.000000001</td>
<td>nano-</td>
<td>n</td>
</tr>
<tr>
<td>10⁻¹²</td>
<td>0.0000000001</td>
<td>pico-</td>
<td>p</td>
</tr>
<tr>
<td>10⁻¹⁵</td>
<td>femto-</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>10⁻¹⁸</td>
<td>atto-</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>10⁻²¹</td>
<td>zepto-</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>10⁻²⁴</td>
<td>yocto-</td>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>

Numbers Greater Than One

<table>
<thead>
<tr>
<th>Power of 10</th>
<th>Whole Number Equivalent</th>
<th>Prefix</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10¹</td>
<td>10</td>
<td>deca-</td>
<td>da</td>
</tr>
<tr>
<td>10²</td>
<td>100</td>
<td>hecto-</td>
<td>h</td>
</tr>
<tr>
<td>10³</td>
<td>1000</td>
<td>kilo-</td>
<td>k</td>
</tr>
<tr>
<td>10⁶</td>
<td>1,000,000</td>
<td>Mega-</td>
<td>M</td>
</tr>
<tr>
<td>10⁹</td>
<td>1,000,000,000</td>
<td>Giga-</td>
<td>G</td>
</tr>
<tr>
<td>10¹²</td>
<td>100,000,000,000</td>
<td>Tera-</td>
<td>T</td>
</tr>
<tr>
<td>10¹⁵</td>
<td>100,000,000,000</td>
<td>Peta-</td>
<td>P</td>
</tr>
<tr>
<td>10¹⁸</td>
<td>100,000,000,000</td>
<td>Exa-</td>
<td>E</td>
</tr>
<tr>
<td>10²¹</td>
<td>100,000,000,000</td>
<td>Zetta-</td>
<td>Z</td>
</tr>
<tr>
<td>10²⁴</td>
<td>100,000,000,000</td>
<td>Yotta-</td>
<td>Y</td>
</tr>
</tbody>
</table>

8.0 SI Prefixes

9.0 Equations

Mass and Weight
- m = VDₘ (9.1)
- W = mg (9.2)
- W = VDₘ (9.3)

Force (6.7)
- 1 N = 0.225 lb
- 1 kip = 1,000 lb

Temperature
- Tₖ = Tₙ + 273 (9.4)
- Tᵣ = Tᵣ + 460 (9.5)
- Tₜ = Tₜ + 32 (9.6a)
- Tₚ = Tₚ + 32 (9.6b)

Rotational Speed
- 1 Hz = 2π rad/sec = 60 rpm

Equations of Static Equilibrium

Temperature
- Tₖ = temperature in Kelvin
- Tₙ = temperature in Celsius
- Tᵣ = temperature in Rankin
- Tₚ = temperature in Fahrenheit

Force and Moment
- F = ma (9.7a)
- M = Fd (9.7b)
- F = force
- m = mass
- a = acceleration
- M = moment
- dₘ = perpendicular distance

Equations of Static Equilibrium

- 2Fₓ = 0
- 2Fᵧ = 0
- 2Mₚ = 0 (9.8)
9.0 Equations (Continued)

Energy: Work

\[W = F \cdot d \quad (9.9) \]

- \(W \) = work
- \(F \) = force parallel to direction of displacement
- \(d \) = displacement

Power

\[P = \frac{E}{t} = \frac{W}{t} \quad (9.10) \]

- \(P \) = power
- \(E \) = energy
- \(W \) = work
- \(t \) = time
- \(\tau \) = torque
- \(\omega \) = angular velocity

Efficiency

\[\text{Efficiency} \% = \frac{P_{\text{out}}}{P_{\text{in}}} \cdot 100\% \quad (9.12) \]

- \(P_{\text{out}} \) = useful power output
- \(P_{\text{in}} \) = total power input

Energy: Potential

\[U = mgh \quad (9.13) \]

- \(U \) = potential energy
- \(m \) = mass
- \(g \) = acceleration due to gravity
- \(h \) = height

Energy: Kinetic

\[K = \frac{1}{2} mv^2 \quad (9.14) \]

- \(K \) = kinetic energy
- \(m \) = mass
- \(v \) = velocity

Energy: Thermal

\[\Delta Q = mc\Delta T \quad (9.15) \]

- \(\Delta Q \) = change in thermal energy
- \(m \) = mass
- \(c \) = specific heat
- \(\Delta T \) = change in temperature

Fluid Mechanics

\[p = \frac{F}{A} \quad (9.16) \]

- \(p \) = absolute pressure
- \(F \) = force
- \(A \) = area

\[V_1 = \frac{V_2}{T_1} \quad (9.17) \]

- \(V_1 \) = initial volume
- \(V_2 \) = final volume
- \(T_1 \) = initial temperature
- \(T_2 \) = final temperature

\[\rho \cdot V_1 = \rho \cdot V_2 \quad (9.18) \]

- \(\rho \) = density

\[Q = Av \quad (9.20) \]

- \(Q \) = rate of heat transfer
- \(A \) = area
- \(v \) = flow velocity

\[P = Qp \quad (9.22) \]

- \(P \) = power
- \(Q \) = rate of heat transfer

\[1 \quad (9.23) \]

- \(v \) = flow velocity
- \(P \) = power

\[\frac{\rho_1 \cdot V_1 + \rho_2 \cdot V_2}{\rho_1} \quad (9.21) \]

- \(\rho_1 \) = density of fluid 1
- \(V_1 \) = volume of fluid 1
- \(\rho_2 \) = density of fluid 2
- \(V_2 \) = volume of fluid 2

Thermodynamics

\[P = Q' = A\rho\Delta T \quad (9.38) \]

- \(P \) = power
- \(Q' \) = rate of heat transfer
- \(A \) = area
- \(\rho \) = thermal conductivity
- \(\Delta T \) = change in temperature

\[U = \frac{\rho}{R} \quad (9.40) \]

- \(U \) = coefficient of heat conductivity
- \(R \) = resistance

\[P = \frac{kA\Delta T}{L} \quad (9.41) \]

- \(P \) = power
- \(k \) = thermal conductivity
- \(A \) = area
- \(\Delta T \) = change in temperature
- \(L \) = thickness

\[P_{\text{net}} = \sigma\varepsilon(\varepsilon_2T_2^4 - \varepsilon_1T_1^4) \quad (9.43) \]

- \(\sigma \) = Stefan-Boltzmann constant
- \(\varepsilon \) = emissivity
- \(\varepsilon_1, \varepsilon_2 \) = emissivities
- \(T_1, T_2 \) = temperature at time 1, time 2

Electricity

Ohm’s Law

\[V = IR \quad (9.32) \]

- \(V \) = voltage
- \(I \) = current
- \(R \) = resistance

\[P = IV \quad (9.33) \]

- \(P \) = power

\[R_1 (\text{series}) = R_1 + R_2 + \cdots + R_n \quad (9.34) \]

\[R_{\text{f}} (\text{parallel}) = \frac{1}{R_1 + \frac{1}{R_2} + \cdots + \frac{1}{R_n}} \quad (9.35) \]

Kirchhoff’s Current Law

\[I_1 = I_2 + I_3 + \cdots + I_n \quad (9.36) \]

Kirchhoff’s Voltage Law

\[V_T = V_1 + V_2 + \cdots + V_n \quad (9.37) \]

- \(V_T \) = total voltage
- \(I_1, I_2, \ldots, I_n \) = currents
- \(V_1, V_2, \ldots, V_n \) = voltages

\[\tau = \omega \quad (9.42) \]

- \(\tau \) = torque
- \(\omega \) = angular velocity

\[\text{efficiency} \% = \frac{1}{100\%} \quad (9.44) \]

- \(\text{efficiency} \% \) = useful power output
- \(\text{in} \) = total power input

\[v = \text{flow velocity} \]

- \(v \) = flow velocity

\[T = \text{absolute temperature} \]

- \(T \) = absolute temperature
10.0 Section Properties

Moment of Inertia

\[I_{xx} = \frac{bh^3}{12} \] \hspace{1cm} (10.1)

\(I_{xx} \) = moment of inertia of a rectangular section about x axis

Complex Shapes Centroid

\[\bar{x} = \frac{\sum x_i A_i}{\sum A_i} \quad \text{and} \quad \bar{y} = \frac{\sum y_i A_i}{\sum A_i} \] \hspace{1cm} (10.2)

\(\bar{x} \) = x-distance to the centroid
\(\bar{y} \) = y-distance to the centroid
\(x_i \) = x distance to centroid of shape i
\(y_i \) = y distance to centroid of shape i
\(A_i \) = Area of shape i

Rectangle Centroid

\(\bar{x} = \frac{b}{2} \quad \text{and} \quad \bar{y} = \frac{h}{2} \) \hspace{1cm} (10.3)

Right Triangle Centroid

\(\bar{x} = \frac{b}{3} \quad \text{and} \quad \bar{y} = \frac{h}{3} \) \hspace{1cm} (10.4)

Semi-circle Centroid

\(\bar{x} = r \quad \text{and} \quad \bar{y} = \frac{4r}{3\pi} \) \hspace{1cm} (10.5)

\(\bar{x} \) = x-distance to the centroid
\(\bar{y} \) = y-distance to the centroid

11.0 Material

Stress (axial)

\[\sigma = \frac{F}{A} \] \hspace{1cm} (11.1)

\(\sigma \) = stress
\(F \) = axial force
\(A \) = cross-sectional area

Strain (axial)

\[\varepsilon = \frac{\delta}{L_0} \] \hspace{1cm} (11.2)

\(\varepsilon \) = strain
\(L_0 \) = original length
\(\delta \) = change in length

Modulus of Elasticity

\[E = \frac{\sigma}{\varepsilon} \] \hspace{1cm} (11.3)

\[E = \frac{(F_2-F_1)L_0}{(\delta_2-\delta_1)A} \] \hspace{1cm} (11.4)

\(E \) = modulus of elasticity
\(\sigma \) = stress
\(\varepsilon \) = strain
\(A \) = cross-sectional area
\(F \) = axial force
\(\delta \) = deformation

12.0 Structural Analysis

Beam Formulas

Reaction

\[R_A = R_B = \frac{P}{2} \] \hspace{1cm} (12.1)

Moment

\[M_{max} = \frac{PL}{4} \] \hspace{1cm} (at point of load) (12.2)

Deflection

\[\Delta_{max} = \frac{PL^3}{384EI} \] \hspace{1cm} (at point of load) (12.3)

Reaction

\[R_A = R_B = \frac{0.5L}{2} \] \hspace{1cm} (12.4)

Moment

\[M_{max} = \frac{0.5L^2}{8} \] \hspace{1cm} (at center) (12.5)

Deflection

\[\Delta_{max} = \frac{0.5L^4}{384EI} \] \hspace{1cm} (at center) (12.6)

Reaction

\[R_A = R_B = P \] \hspace{1cm} (12.7)

Moment

\[M_{max} = Pa \] \hspace{1cm} (12.8)

Deflection

\[\Delta_{max} = \frac{Pa^2}{24EI} \left(3L^2-4a^2 \right) \] \hspace{1cm} (at center) (12.9)

Reaction

\[R_A = \frac{Pb}{L} \quad \text{and} \quad R_B = \frac{Pb}{L} \] \hspace{1cm} (12.10)

Moment

\[M_{max} = \frac{Pab(L^2+2a^2)}{2L} \] \hspace{1cm} (at Point of Load) (12.11)

Deflection

\[\Delta_{max} = \frac{Pab(L^2+2a^2)}{27EI} \] \hspace{1cm} (12.12)

\(x = \frac{a^2+b^2}{a+b} \) when \(a > b \)

\(E \) = modulus of elasticity
\(I \) = moment of inertia

Deformation: Axial

\[\delta = \frac{FL_0}{AE} \] \hspace{1cm} (12.13)

\(\delta \) = deformation
\(F \) = axial force
\(L_0 \) = original length
\(A \) = cross-sectional area
\(E \) = modulus of elasticity

Truss Analysis

\[2J = M + R \] \hspace{1cm} (12.14)

\(J \) = number of joints
\(M \) = number of members
\(R \) = number of reaction forces
13.0 Simple Machines

Mechanical Advantage (MA)

\[
IMA = \frac{D_E}{D_R} \quad (13.1) \quad AMA = \frac{F_R}{F_E} \quad (13.2)
\]

% Efficiency = \(\left(\frac{AMA}{IMA} \right) \times 100 \) \((13.3) \)

IMA = ideal mechanical advantage
AMA = actual mechanical advantage
\(D_E \) = effort distance \(D_R \) = resistance distance
\(F_E \) = effort force \(F_R \) = resistance force

Inclined Plane

\[
IMA = \frac{L}{H} \quad (13.6)
\]

Wedge

\[
IMA = \frac{L}{H} \quad (13.7)
\]

Screw

\[
IMA = \frac{C}{Pitch} \quad (13.8)
\]

Pitch = \(\frac{1}{TPI} \) \((13.9) \)

\(C \) = circumference \(r \) = radius
Pitch = distance between threads
TPI = threads per inch

Compound Machines

\[
MA_{\text{TOTAL}} = (MA_1)(MA_2)(MA_3) \ldots \quad (13.10)
\]

Gears; Sprockets with Chains; and Pulleys with Belts Ratios

\[
GR = \frac{N_{\text{out}}}{N_{\text{in}}} = \frac{d_{\text{out}}}{d_{\text{in}}} = \frac{\omega_{\text{in}}}{\omega_{\text{out}}} = \frac{\tau_{\text{out}}}{\tau_{\text{in}}} \quad (13.11)
\]

\[
\frac{d_{\text{out}}}{d_{\text{in}}} = \frac{\omega_{\text{in}}}{\omega_{\text{out}}} = \frac{\tau_{\text{out}}}{\tau_{\text{in}}} \quad (\text{pulleys}) \quad (13.12)
\]

Compound Gears

\[
GR_{\text{TOTAL}} = \left(\frac{B}{A} \right) \left(\frac{D}{C} \right) \quad (13.13)
\]

GR = gear ratio
\(\omega_{\text{in}} \) = angular velocity - driver
\(\omega_{\text{out}} \) = angular velocity - driven
\(N_{\text{in}} \) = number of teeth - driver
\(N_{\text{out}} \) = number of teeth - driven
\(d_{\text{in}} \) = diameter - driver
\(d_{\text{out}} \) = diameter - driven
\(\tau_{\text{in}} \) = torque - driver
\(\tau_{\text{out}} \) = torque - driven
14.0 Structural Design

Steel Beam Design: Shear

\[V_a \leq \frac{V_n}{\Omega_v} \]
(14.1)

\[V_n = 0.6F_yA_w \]
(14.2)

- \(V_a \): internal shear force
- \(V_n \): nominal shear strength
- \(\Omega_v \): 1.5 = factor of safety for shear
- \(F_y \): yield stress
- \(A_w \): area of web
- \(\frac{V_n}{\Omega_v} \): allowable shear strength

Steel Beam Design: Moment

\[M_a \leq \frac{M_n}{\Omega_b} \]
(14.3)

\[M_n = F_Y Z_c \]
(14.4)

- \(M_a \): internal bending moment
- \(M_n \): nominal moment strength
- \(\Omega_b \): 1.67 = factor of safety for bending moment
- \(F_Y \): yield stress
- \(Z_c \): plastic section modulus about neutral axis
- \(\frac{M_n}{\Omega_b} \): allowable bending strength

15.0 Storm Water Runoff

Storm Water Drainage

\[Q = C_c C_i A \]
(15.1)

\[C_c = \frac{C_i A_1 + C_2 A_2 + \ldots}{A_1 + A_2 + \ldots} \]
(15.2)

- \(Q \): peak storm water runoff rate (ft³/s)
- \(C_c \): runoff coefficient adjustment factor
- \(C_i \): runoff coefficient
- \(i \): rainfall intensity (in./h)
- \(A \): drainage area (acres)

<table>
<thead>
<tr>
<th>Runoff Coefficient Adjustment Factor</th>
<th>Return Period</th>
<th>Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1, 2, 5, 10</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Rational Method Runoff Coefficients

Categorized by Surface

- Forested: 0.059—0.2
- Asphalt: 0.7—0.95
- Brick: 0.7—0.85
- Concrete: 0.8—0.95
- Shingle roof: 0.75—0.95
- Lawns, well drained (sandy soil): 0.05—0.1
- Up to 2% slope: 0.10—0.15
- Over 7% slope: 0.15—0.2
- Lawns, poor drainage (clay soil): 0.75—0.85

Categorized by Use

- Farmland: 0.05—0.3
- Pasture: 0.05—0.3
- Unimproved: 0.1—0.3
- Parks: 0.1—0.25
- Cemeteries: 0.1—0.25
- Railroad yard: 0.2—0.40
- Playgrounds: 0.2—0.35
- Business Districts
 - Neighborhood: 0.5—0.7
 - City (downtown): 0.7—0.95
- Residential
 - Single-family: 0.3—0.5
 - Multi-plexes: 0.4—0.6
 - Multi-plexes: 0.6—0.75
- Suburban: 0.25—0.4
- Apartments:
 - Light: 0.5—0.8
 - Heavy: 0.6—0.9

16.0 Water Supply

Hazen-Williams Formula

\[h_r = \frac{10.44 L Q^{1.85}}{C_i^{1.85} q^{0.865}} \]
(16.1)

- \(h_r \): head loss due to friction (ft of H₂O)
- \(L \): length of pipe (ft)
- \(Q \): water flow rate (gpm)
- \(C_i \): Hazen-Williams constant

Dynamic Head

\(h_r = \frac{V^2}{2g} \)
(16.2)

- \(V \): velocity (ft/s)
- \(g \): gravitational acceleration (ft/s²)

17.0 Heat Loss/Gain

Heat Loss/Gain

\[Q' = AU\Delta T \]
(17.1)

\[U = \frac{1}{R} \]
(17.2)

- \(Q' \): thermal energy
- \(A \): area of thermal conductivity
- \(U \): coefficient of heat conductivity (U-factor)
- \(\Delta T \): change in temperature
- \(R \): resistance to heat flow (R-value)
18.0 Hazen-Williams Constants

<table>
<thead>
<tr>
<th>Pipe Material</th>
<th>Typical Range</th>
<th>Clean, New Pipe</th>
<th>Typical Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast Iron and Wrought Iron</td>
<td>80 - 150</td>
<td>130</td>
<td>100</td>
</tr>
<tr>
<td>Copper, Glass or Brass</td>
<td>120 - 150</td>
<td>140</td>
<td>130</td>
</tr>
<tr>
<td>Cement lined Steel or Iron</td>
<td>150</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Plastic PVC or ABS</td>
<td>120 - 150</td>
<td>140</td>
<td>130</td>
</tr>
<tr>
<td>Steel, welded and seamless or interior riveted</td>
<td>80-150</td>
<td>140</td>
<td>100</td>
</tr>
</tbody>
</table>

19.0 Equivalent Length of (Generic) Fittings

Screwed Fittings

<table>
<thead>
<tr>
<th>Elbows</th>
<th>1/4</th>
<th>3/8</th>
<th>1/2</th>
<th>3/4</th>
<th>1</th>
<th>1 ¼</th>
<th>1 ½</th>
<th>2</th>
<th>2 ½</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular 90 degree</td>
<td>2.3</td>
<td>3.1</td>
<td>3.6</td>
<td>4.4</td>
<td>5.2</td>
<td>6.6</td>
<td>7.4</td>
<td>8.5</td>
<td>9.3</td>
<td>11.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Long radius 90 degree</td>
<td>1.5</td>
<td>2.0</td>
<td>2.2</td>
<td>2.3</td>
<td>2.7</td>
<td>3.2</td>
<td>3.4</td>
<td>3.6</td>
<td>3.6</td>
<td>4.0</td>
<td>4.6</td>
</tr>
<tr>
<td>Regular 45 degree</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>1.3</td>
<td>1.7</td>
<td>2.1</td>
<td>2.7</td>
<td>3.2</td>
<td>4.0</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Tees											
Line Flow	0.8	1.2	1.7	2.4	3.2	4.6	5.6	7.7	9.3	12.0	17.0
Branch Flow	2.4	3.5	4.2	5.3	6.6	8.7	9.9	12.0	13.0	17.0	21.0

| Return | | | | | | | | | | | |
| Regular 180 degree | 2.3 | 3.1 | 3.6 | 4.4 | 5.2 | 6.6 | 7.4 | 8.5 | 9.3 | 11.0| 13.0|

Valves											
Globe	21.0	22.0	22.0	24.0	29.0	37.0	42.0	54.0	62.0	79.0	110.0
Gate	0.3	0.5	0.6	0.7	0.8	1.1	1.2	1.5	1.7	1.9	2.5
Angle	12.8	15.0	15.0	15.0	17.0	18.0	18.0	18.0	18.0	18.0	18.0
Swing Check	7.2	7.3	8.0	8.8	11.0	13.0	15.0	19.0	22.0	27.0	38.0

| Strainer | | | | | | | | | | | |
| | 4.6 | 5.0 | 6.6 | 7.7 | 18.0| 20.0| 27.0| 29.0| 34.0| 42.0| |

Flanged Fittings

<table>
<thead>
<tr>
<th>Elbows</th>
<th>1/2</th>
<th>3/4</th>
<th>1</th>
<th>1 ¼</th>
<th>1 ½</th>
<th>2</th>
<th>2 ½</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular 90 degree</td>
<td>0.9</td>
<td>1.2</td>
<td>1.6</td>
<td>2.1</td>
<td>2.4</td>
<td>3.1</td>
<td>3.6</td>
<td>4.4</td>
<td>5.9</td>
</tr>
<tr>
<td>Long radius 90</td>
<td>1.1</td>
<td>1.3</td>
<td>1.6</td>
<td>2.0</td>
<td>2.3</td>
<td>2.7</td>
<td>2.7</td>
<td>3.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Regular 45 degree</td>
<td>0.5</td>
<td>0.6</td>
<td>0.8</td>
<td>1.1</td>
<td>1.3</td>
<td>1.7</td>
<td>2.0</td>
<td>2.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Tees											
Line Flow	0.7	0.8	1.0	1.3	1.5	1.8	1.9	2.2	2.8	3.3	3.8
Branch Flow	2.0	2.6	3.3	4.4	5.2	6.6	7.5	9.4	12.0	15.0	18.0

| Return | | | | | | | | | | | |
| Regular 180 degree | 0.9 | 1.2 | 1.6 | 2.1 | 2.4 | 3.1 | 3.6 | 4.4 | 5.9 | 7.3 | 8.9 |

| Return Bends | | | | | | | | | | | |
| Long radius 180 | 1.1 | 1.3 | 1.6 | 2.0 | 2.3 | 2.7 | 2.9 | 3.4 | 4.2 | 5.7 | 7.0 |

Valves											
Globe	38.0	40.0	45.0	54.0	59.0	70.0	77.0	94.0	120.0	150.0	190.0
Gate	2.6	2.7	2.8	2.9	3.1	3.2	3.2	3.2	3.2	3.2	3.2
Angle	15.0	15.0	17.0	18.0	18.0	21.0	22.0	285.0	38.0	50.0	63.0
Swing Check	3.8	5.3	7.2	10.0	12.0	17.0	21.0	27.0	38.0	50.0	63.0

© 2018 Project Lead The Way, Inc.
PLTW Engineering Formula Sheet 2018
21.A Boolean Algebra

Boolean Theorems

- $X \cdot 0 = 0$ (21.1)
- $X \cdot 1 = X$ (21.2)
- $X \cdot X = X$ (21.3)
- $X \cdot \bar{X} = 0$ (21.4)
- $X + 0 = X$ (21.5)
- $X + 1 = 1$ (21.6)
- $X + X = X$ (21.7)
- $X + \bar{X} = 1$ (21.8)

Consensus Theorems

- $X + XY = X + Y$ (21.16)
- $X + \bar{Y} = X + \bar{Y}$ (21.17)
- $X + XY = X + Y$ (21.18)
- $X + XY = X + \bar{Y}$ (21.19)

DeMorgan's Theorems

- $XY = \bar{X} \cdot \bar{Y}$ (21.20)
- $X + Y = \bar{X} \cdot \bar{Y}$ (21.21)

Commutative Law

- $X \cdot Y = Y \cdot X$ (21.10)
- $X + Y = Y + X$ (21.11)

Associative Law

- $X(YZ) = (XY)Z$ (21.12)
- $X + (Y + Z) = (X + Y) + Z$ (21.13)

Distributive Law

- $X(Y+Z) = XY + XZ$ (21.14)
- $(X+Y)(W+Z) = XW+XZ+YW+YZ$ (21.15)

<table>
<thead>
<tr>
<th>1st Band</th>
<th>2nd Band</th>
<th>Multiplier</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>.01</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>Silver</td>
<td>.001</td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td>Gold</td>
<td>00.1</td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>Black</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Violet</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Gray</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>1000M</td>
<td>1000M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22.0 Speeds and Feeds

- $N = \frac{CS(12n_{in})}{\pi d}$ (22.1)
- $f_m = f_r \cdot n_t \cdot N$ (22.2)

- Plunge Rate = $\frac{1}{2} \cdot f_m$
- N = spindle speed (rpm)
- CS = cutting speed (ft/min)
- d = diameter (in.)
- f_m = feed rate (in./min)
- f_r = feed (in./tooth/rev)
- n_t = number of teeth

23.A G&M Codes

- G00 = Rapid Traverse
- G01 = Straight Line Interpolation
- G02 = Circular Interpolation (clockwise)
- G03 = Circular Interpolation (c-clockwise)
- G04 = Dwell (wait)
- G05 = Pause for user intervention
- G06 = Tool change
- G20 = Inch programming units
- G21 = Millimeter programming units
- G80 = Canned cycle cancel
- G81 = Drilling cycle
- G82 = Drilling cycle with dwell
- G90 = Absolute Coordinates
- G91 = Relative Coordinates
- M00 = Pause
- M01 = Optional stop
- M02 = End of program
- M03 = Spindle on
- M04 = Spindle off
- M05 = Tool change
- M08 = Accessory # 1 on
- M09 = Accessory # 1 off
- M10 = Accessory # 2 on
- M11 = Accessory # 2 off
- M30 = Program end and reset
- M47 = Rewind
24.0 Aerospace

Forces of Flight

- **C_D** = \(\frac{2D}{Apv^2} \) \hspace{1cm} (24.1)
- **R_e** = \(\frac{pvl}{\mu} \) \hspace{1cm} (24.2)
- **C_L** = \(\frac{2L}{Apv^2} \) \hspace{1cm} (24.3)
- **M** = \(Fd \) \hspace{1cm} (24.4)

- \(C_L \) = coefficient of lift
- \(C_D \) = coefficient of drag
- \(L \) = lift
- \(D \) = drag
- \(A \) = wing area
- \(\rho \) = density
- \(R_e \) = Reynolds number
- \(v \) = velocity
- \(l \) = length of fluid travel
- \(\mu \) = fluid viscosity
- \(F \) = force
- \(m \) = mass
- \(g \) = acceleration due to gravity
- \(M \) = moment
- \(d \) = moment arm (distance from datum perpendicular to \(F \))

Bernoulli’s Law

\[
\left(P_s + \frac{\rho v^2}{2} \right)_1 = \left(P_s + \frac{\rho v^2}{2} \right)_2 \hspace{1cm} (24.16)
\]

- \(P_s \) = static pressure
- \(v \) = velocity
- \(\rho \) = density

Propulsion

- \(F_N = W(v_f - v_o) \) \hspace{1cm} (24.5)
- \(I = F_{ave} \Delta t \) \hspace{1cm} (24.6)
- \(F_{net} = F_{avg} - F_g \) \hspace{1cm} (24.7)
- \(a = \frac{\nu_f}{\Delta t} \) \hspace{1cm} (24.8)

- \(F_N \) = net thrust
- \(W \) = air mass flow
- \(v_o \) = flight velocity
- \(v_f \) = jet velocity
- \(I \) = total impulse
- \(\Delta t \) = change in time
- \(F_{ave} \) = average thrust force
- \(F_{net} \) = net force
- \(F_{avg} \) = average force
- \(F_g \) = force of gravity
- \(\nu_f \) = final velocity
- \(a \) = acceleration
- \(\Delta t \) = change in time

NOTE: \(F_{ave} \) and \(F_{avg} \) are easily confused.

Energy

- \(K = \frac{1}{2}mv^2 \) \hspace{1cm} (24.9)
- \(U = -\frac{GMM}{R} \) \hspace{1cm} (24.10)
- \(E = U + K = -\frac{GMM}{2R} \) \hspace{1cm} (24.11)
- \(G = 6.67 \times 10^{-11} \frac{m^3}{kg \times s^2} \) \hspace{1cm} (24.12)

- \(K \) = kinetic energy
- \(m \) = mass
- \(v \) = velocity
- \(U \) = gravitational potential energy
- \(G \) = universal gravitation constant
- \(M \) = mass of central body
- \(m \) = mass of orbiting object
- \(R \) = Distance center main body to center of orbiting object
- \(E \) = Total Energy of an orbit
- \(M_{Earth} = 5.97 \times 10^{24} \) kg
- \(r_{Earth} = 6.378 \times 10^3 \) km

Orbital Mechanics

- \(e = \sqrt{1 - \frac{b^2}{a^2}} \) \hspace{1cm} (24.13)
- \(T = 2\pi \frac{a^3}{\sqrt{\mu}} = 2\pi \frac{a^3}{\sqrt{GM}} \) \hspace{1cm} (24.14)
- \(F = \frac{GMM}{r^2} \) \hspace{1cm} (24.15)

- \(e \) = eccentricity
- \(b \) = semi-minor axis
- \(a \) = semi-major axis
- \(T \) = orbital period
- \(\mu \) = gravitational parameter
- \(F \) = force of gravity between two bodies
- \(G \) = universal gravitation constant
- \(M \) = mass of central body
- \(m \) = mass of orbiting object
- \(r \) = distance between center of two objects

25.0 Environmental Sustainability

Transformation Efficiency

\[
\text{# of moles of } CO_2 \times \frac{\text{# of transformants/}\mu g \text{ of DNA}}{\text{# of moles of glucose produced in formula}} = \frac{\text{# of moles consumed in experiment}}{\text{# of moles of glucose produced in experiment}} \hspace{1cm} (25.3)
\]

Economic Growth

\[
\text{R}_I = \frac{\text{distance the substance travels}}{\text{distance the solvent travels}} \hspace{1cm} (25.5)
\]

- \(\text{GDP}_2 \) = GDP at recovery
- \(\text{GDP}_1 \) = GDP
- \(\text{volume plated} \) = (mL)
- \(\text{final volume at recovery} \)

© 2018 Project Lead The Way, Inc.
26.0 **USCS Soil Classification Chart**

Visual Examination. Is soil highly organic, coarse grained, or fine grained?

50% or more retained on the No. 200 sieve

<table>
<thead>
<tr>
<th>%G > %S</th>
<th>%S > %G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Grained</td>
<td>Run sieve analysis</td>
</tr>
</tbody>
</table>

More than 50% passes the No. 200 sieve

Coarse Grained Run sieve analysis

- **Gravel (G)**
 - Less than 5% pass No. 200 sieve
 - Between 5% and 12% pass No. 200 sieve
 - More than 12% pass No. 200 sieve
- **Sand (S)**
 - Less than 5% pass No. 200 sieve
 - Between 5% and 12% pass No. 200 sieve
 - More than 12% pass No. 200 sieve

Fine grained Run LL and PL on minus No. 40 sieve material

- **LL < 50**
 - Below line on Plasticity Chart or PI < 4
- **LL ≥ 50**
 - Limits plot in shaded area of Plasticity Chart
 - Above line on Plasticity Chart and PI > 7

Highly Organic Soils (Pt) Color, odor, very high moisture content, particles of plant life, fibrous.

- **ML** Inorganic
- **ML-CL** Organic
- **CL** Inorganic
- **CH** Organic

© 2018 Project Lead The Way, Inc.
PLTW Engineering Formula Sheet 2018